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PHENIX News

New releases

A new feature in the PHENIX GUI is designed to
compare the refined structures of similar proteins.
Structure comparison uses the protein sequences

to display the differences between each protein

chain loaded in both a table format and
graphically in COOT. Several features of the
protein structure can be compared including
rotamers and secondary structure. NCS chains can
be overlaid in COOT, edited and saved in the
original orientation.

The Java kinemage viewer KiNG (Protein Science
2009, 18:2403-2409) has been incorporated into
PHENIX, so that the KiNG jar files and supporting
scripts will be part of the distribution package,
while relying on the Java virtual machine that is
standard on the user's Mac or Linux platform.
Without any other setup, the KiNG program in
PHENIX would allow viewing of macromolecular
structures directly from PDB files, and viewing of
kinemages (such as multi-criterion kinemages
from MolProbity). We are currently working to
incorporate validation kinemage creation directly
within the PHENIX GUI, allowing even more
seamless and complete user evaluation of model
quality during the refinement process. Later
developments might also provide kinemage
displays to provide help in evaluating
other aspects of refinement and model building
progress.

In a similar vein to phenix.superpose pdbs, a
new program has been added to PHENIX that is
specifically designed for superposing ligands.
Superposing protein models is generally done
using the C, positions. Ligands require different
algorithms to create atomic correspondences,
some of which has been implemented in eLBOW
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(Moriarty et. al, Acta Cryst, D65, 2009, 1074-
1080). eLBOW’s methods including graph
matching are used to match the atoms from a
single molecule or group of residues to another
single molecule. The resulting correspondences
can be used in several ways. The molecules can be
aligned using the least-squares residual of the
distances between matched atoms; the exact
position of the corresponding atoms can be
transferred; or the PDB attributes such as atom
name and residue name can be transferred. A file
containing a protein and ligand can be used as
input and multiple instances of the ligand can be
handled. The program can be accessed by running
phenix.superpose_ ligands.

A tool developed especially for our industrial
consortium members and designed to decrease
the time to fit a ligand by using a previously
positioned ligand in the same or similar protein
model has been added to PHENIX. Guided Ligand
Replacement (GLR) matches the protein models,
determines the location of the fit ligand, performs
an atomic match of the ligands and inserts the
overlaid ligand into the apo protein model. As a
final step, a real-space refinement is performed on
the ligand and the surrounding protein. GLR
attempts to match all instances of the guiding
ligand in the asymmetric unit.

New features

RESOLVE in PHENIX is now entirely C++ code. This
allows the use of the cctbx routines in RESOLVE
and speeds up RESOLVE model-building by a
factor of nearly two. It also allows caching of
resolve libraries, further speeding up RESOLVE in
PHENIX.

Ligand fitting in PHENIX now incorporates real-
space refinement, yielding greatly improved fits of
ligand to density.

Loop libraries have been created for rapid fitting
of short loops with phenix.fit loops.

The ligand geometry restraints editor, REEL, has a
new feature that allows searching of the Chemical
Components Dictionary available at
http://www.wwpdb.org/ccd.html and also
distributed with PHENIX. The user can search
using various ligand attributes including name
and chemical formula. The results can be viewed
in the molecular viewing window.

Current PHENIX development

Work is currently underway to improve the
support for carbohydrates in macromolecular
models. The GlycoCT format (Herget et al,
Carbohydr. Res., 2008, 343:2162-2171) which can
specify a carbohydrate sequence has been chosen
as the base format for file based input. Other
formats will be supported. A GUI input is also
being developed as well as tools to handle models
already containing the carbohydrates. It is
expected that ligand fitting will be expanded to
improve the fitting of carbohydrates focusing on
the saccharide chains that commonly occur in
protein models. Branching will be supported from
the inception.

Crystallographic meetings and
workshops

2010 Australasian Crystallography School, 17-24
July, 2010

The 2010 Australasian Crystallography School is
being held at the University of Queensland,
Brisbane, Australia from the 17th to the 24th of
July. Pavel Afonine will be teaching a module on
macro-molecular refinement.

GRC - Diffraction Method in Crystallography, 18-23
July 2010

Several of the PHENIX developers will be
attending the Gordon Conference entitled
“Diffraction Methods in Crystallography” to be
held at Bates College, Lewiston, Maine from the
18t to the 23rd of July. There will be posters on
the various aspects of PHENIX including the
graphical user interface, validation and ligands.
Drop by during the poster sessions to speak to the
developers.

ACA - 2010 Annual Meeting, 24-29 July, 2010

The annual meeting of the American
Crystallographic Association will be held in
Chicago, lllinois from the 24t to the 29t of July.

22" PHENIX Workshop, 11-13 October, 2010

The semi-annual PHENIX workshop is being held
in Cambridge, England from the 11th to the 13t of
October. Developers will be presenting the latest
programs and feature releases on Monday the
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11th. All interested parties in the area are invited
to attend the Monday sessions.

5" PHENIX User’s Workshop, 14 October, 2010

Following the PHENIX Workshop in Cambridge
U.K,, a user’s workshop will provide teaching and
hands-on experience with PHENIX for the novice
and expert.

Paris Workshop, 15 October, 2010

A contingent of PHENIX developers will be at
Institut Pasteur, Paris, France on the 15th of
October to participate in a workshop for the local
users. The workshop is being organized by
Claudine Mayer and Deshmukh Gopaul and is
funded by the "Groupe Thematique Biologie" of
the French Crystallography Association.

Expert advice

Geometry restraint ESD

Many users enquire about the details of the
geometry restraints used in macromolecular
refinement programs. Refmac, COOT and PHENIX
use a CIF format; an example of the restraints for
water appears at right.

Much of the information in the file is
straightforward including atom names, elements
and Cartesian coordinates. Even the bonding
information is mostly transparent. The atoms
involved, the type of bond and the ideal bond
lengths are easily discerned. The last number on
the line, however, is not so simple. The ESD is an
Estimated Standard Deviation that allows a
refinement program to estimate the gradients of
the force on the two atoms in the bond using a
parabola. The units of the ESD are the same as the
ideal value so for bond lengths the unit is
Angstrom. The larger the ESD value, the more
flexible the restraint will be in the refinement.
Conversely, reducing the number will restrain the
internal coordinate to remain closer to the ideal
value.

There is a limit to the amount one can reduce the
ESD of a restraint. In the extreme, setting the ESD
value to zero will remove the restraint from the
refinement. Also, reducing the ESD to a value that
is orders of magnitude smaller than the other ESD
values in the same class will greatly reduce the
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weight of the other restraints relative to the highly
restrained value and may even adversely affect
the weight of the x-ray term.

Generally, it is best to have the ESD values
approximately the same as the expected accuracy
of the experiment. In the case of the bond lengths,
an ESD of 0.01 Angstrom could be considered a
reasonable lower bound. An angle ESD of about 1
degree and torsion ESD of 5 degrees are also
reasonable as a lower limit.

FAQ

How do I create restraints for my ligand in PHENIX?
There are a number of ways. If you know the
ligand code corresponding to the ligand in the
PDB databases such as the Chemical Components,
then you can use eLBOW thus:

phenix.elbow --chemical-component=ATP

The resulting files, ATP.pdb and ATP.cif, will
have the data such as atom names consistent with
the Chemical Components database.
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cctbx PDB handling tools
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Introduction

The PDB format is the predominant working format for atomic parameters (coordinates, occupancies,
displacement parameters, etc.) in macromolecular crystallography. Many small-molecule programs also
support this format. The PDB format specifications are available at http://www.pdb.org/. Technically,
the format is very simple, therefore a vast number of parsers exist in scientific packages. This article is
about the PDB handling tools included in the Computational Crystallography Toolbox (cctbx,
http://cctbx.sourceforge.net/), the open-source component of the PHENIX project (http://www.phenix-

online.org/).

The evolution of the cctbx PDB handling tools has gone through three main stages spread out over
several years. A simple parser implemented in Python has been available for a long time. In many cases
Python's runtime performance is sufficient for interactive processing of PDB files, but can be limiting for
large files, or for repeatedly traversing the entire PDB database. This has prompted us to implement a
fast C++ parser that is described in Grosse-Kunstleve et al. (2006). However, initially the fast cctbx
PDB handling tools only supported "read-only" access. Writing of PDB files was supported only at a very
basic level. This shortcoming has been removed and the current cctbx version provides comprehensive
tools for reading, manipulating, and writing PDB files. These tools are available from both Python and
C++, under the iotbx.pdb module.

This article presents an overview of the main types in the iotbx.pdb module, considerations that lead
to the design, and related important nomenclature. It is not a tutorial for using the iotbx.pdb
facilities. For this, refer to http://cctbx.sourceforge.net/sbgrid2008/tutorial.html. See also
http://cci.lbl.gov/hybrid 36/ which describes iotbx . pdb facilities for handling very large models.

Real-world PDB files

The simplicity of the PDB format is only superficial and, in the general case, stops after the initial parsing
level. The structure of the PDB file implies a hierarchy of objects. A first approximation is this
hierarchical view is:

model
chain
residue
atom

This is only an approximation because of a feature that is easily overlooked at first: the "altloc"
(official PDB nomenclature) column 17 of PDB ATOM records, specifying "alternative location"
identifiers for atoms in alternative conformations. As it turned out, about 90% of the development time
invested into iotbx.pdb was in some form related to alternative conformations. Our goal was to
provide robust tools that work even for the most unusual (but valid) cases, since this is a vital
characteristic of any automated system. The main difficulties encountered while pursuing this goal
were:

* Chains with conformers that have different sequences
* Chains with duplicate resseg+icode (residue sequence number + insertion code)
* Conformers interleaved or separated
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These difficulties are best illustrated with examples. An old version of PDB entry 21ZQ (from Aug 2008)
includes a chain with conformers that have different sequences, the residue with resseq 11 in chain A,
atoms 220 through 283:

HEADER ANTIBIOTIC 26-JUL-06 2IZ0Q

ATOM 220 N ATRP A 11 20.498 12.832 34.558 0.50 6.03 N
................ ATRP A 11 ..ttt eeeeeeeeeeeesessssssssososososososssssssasnsssss
ATOM 243 HH2ATRP A 11 15.522 9.077 38.323 0.50 10.40 H
ATOM 244 N CPHE A 11 20.226 13.044 34.556 0.15 6.35 N
................ CPHE A 1]l i ittt eeeeeoooooooccccsscsscsssssssssssssssssssscs
ATOM 254 CZ CPHE A 11 16.789 9.396 34.594 0.15 10.98 C
ATOM 255 N BTYR A 11 20.553 12.751 34.549 0.35 5.21 N
................ BTYR A 1l tiitteneeeeeeeeooooooceecssssscsssssssssssssssssscscs
ATOM 261 CD1BTYR A 11 18.548 10.134 34.268 0.35 9.45 C
ATOM 262 HB2CPHE A 11 21.221 10.536 34.146 0.15 7.21 H
ATOM 263 CD2BTYR A 11 18.463 10.012 36.681 0.35 9.08 C
ATOM 264 HB3CPHE A 11 21.198 10.093 35.647 0.15 7.21 H
ATOM 265 CEIBTYR A 11 17.195 9.960 34.223 0.35 10.76 C
ATOM 266 HDICPHE A 11 19.394 9.937 32.837 0.15 10.53 H
ATOM 267 CE2BTYR A 11 17.100 9.826 36.693 0.35 11.29 C
ATOM 268 HD2CPHE A 11 18.873 10.410 36.828 0.15 9.24 H
ATOM 269 CZ BTYR A 11 16.546 9.812 35.432 0.35 11.90 C
ATOM 270 HEICPHE A 11 17.206 9.172 32.650 0.15 12.52 H
ATOM 271 OH BTYR A 11 15.178 9.650 35.313 0.35 19.29 0]
ATOM 272 HE2CPHE A 11 16.661 9.708 36.588 0.15 11.13 H
ATOM 273 HZ CPHE A 11 15.908 9.110 34.509 0.15 13.18 H
ATOM 274 H BTYR A 11 20.634 12.539 33.720 0.35 6.25 H
................ BTYR A 1l tiitteneeeeeeeeooooooceecssssscsssssssssssssssssscscs
ATOM 282 HH BTYR A 11 14.978 9.587 34.520 0.35 28.94 H

The original atom numbering does not have gaps. Here we have omitted blocks of atoms with constant
resname and resseqg+icode to save space.

As of Jun 8 2010, there are 74 files with mixed residue names in the PDB, i.e. only about 0.1% of the files.
However, these files are perfectly valid and a PDB processing library is suitable as a component of an
automated system only if it handles them sensibly.

An old version of PDB entry 1ZEH (Aug 2008) includes a chain with consecutive duplicate
resseg+icode, atoms 878 through 894:

HEADER HORMONE 01-MAY-98 1ZEH

HETATM 878 C1 ACRS 5 12.880 14.021 1.197 0.50 33.23 C
HETATM 879 C1 BCRS 5 12.880 14.007 1.210 0.50 34.27 C
................ ACRS D ittt it ittt ittt ittt et ettt
HETATM 892 01 ACRS 5 11.973 14.116 2.233 0.50 34.24 (0]
HETATM 893 01 BCRS 5 11.973 14.107 2.248 0.50 35.28 (0]
HETATM 894 O HOH 5 -0.924 19.122 -8.629 1.00 11.73 0]
HETATM 895 O HOH 6 -19.752 11.918 3.524 1.00 13.44 0]
HETATM 896 O HOH 7 -1.169 17.936 -6.103 1.00 12.89 0]

To a human inspecting the old 1ZEH entry, it is of course immediately obvious that the water with
ressedq 5 is not related to the previous residue with resseq 5. However, arriving at this conclusion
with an automatic procedure is not entirely straightforward. The human brings in the knowledge that
water atoms without hydrogen are not covalently connected to other atoms. This is very detailed,
specialized knowledge. Introducing such heuristics into an automatic procedure is likely to lead to
surprises in some situations and is best avoided, if possible.
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In the PDB archive, alternative conformers of a residue always appear consecutively. However, as
mentioned in the introduction, the PDB format is also the predominant working format. Some programs
produce files with conformers separated in this way (this file was provided to us by a user):

ATOM 1716 N ALEU 190 28.628 4.549 20.230 0.70 3.78 N
ATOM 1717 CA ALEU 190 27.606 5.007 19.274 0.70 3.71 C
ATOM 1718 CB ALEU 190 26.715 3.852 18.800 0.70 4.15 C
ATOM 1719 CG ALEU 190 25.758 4.277 17.672 0.70 4.34 C
ATOM 1829 N BLEU 190 28.428 4.746 20.343 0.30 5.13 N
ATOM 1830 CA BLEU 190 27.378 5.229 19.418 0.30 4.89 C
ATOM 1831 CB BLEU 190 26.539 4.062 18.892 0.30 4.88 C
ATOM 1832 CG BLEU 190 25.427 4.359 17.878 0.30 5.95 C
ATOM 1724 N ATHR 191 27.350 7.274 20.124 0.70 3.35 N
ATOM 1725 CA ATHR 191 26.814 8.243 21.048 0.70 3.27 C
ATOM 1726 CB ATHR 191 27.925 9.229 21.468 0.70 3.73 C
ATOM 1727 OG1lATHR 191 28.519 9.718 20.259 0.70 5.22 (0]
ATOM 1728 CG2ATHR 191 28.924 8.567 22.345 0.70 4.21 C
ATOM 1729 C ATHR 191 25.587 8.983 20.559 0.70 3.53 C
ATOM 1730 O ATHR 191 24.872 9.566 21.383 0.70 3.93 (0]
... residues 191 through 203 not shown
ATOM 1828 O AGLY 203 8.948 14.861 23.401 0.70 5.84 (0]
ATOM 1833 CDI1BLEU 190 26.014 4.711 16.521 0.30 6.21 C
ATOM 1835 C BLEU 190 26.506 6.219 20.135 0.30 4.99 C
ATOM 1836 O BLEU 190 25.418 5.939 20.669 0.30 5.91 (0]
ATOM 1721 CD2ALEU 190 24.674 3.225 17.536 0.70 5.31 C
ATOM 1722 C ALEU 190 26.781 6.055 20.023 0.70 3.36 C
ATOM 1723 O ALEU 190 25.693 5.796 20.563 0.70 3.68 (0]
ATOM 8722 C DLEU 190 26.781 6.055 20.023 0.70 3.36 C
ATOM 8723 O DLEU 190 25.693 5.796 20.563 0.70 3.68 o
ATOM 9722 C CLEU 190 26.781 6.055 20.023 0.70 3.36 C
ATOM 9723 O CLEU 190 25.693 5.796 20.563 0.70 3.68 (0]

In this file, conformers A and B of residue 190 appear consecutively, but conformers C and D appear
only after conformers A and B of all residues 191 through 203. While this is not the most intuitive way of
ordering the residues in a file, it is still considered valid because the original intention is clear. Since it
was our goal to develop a comprehensive library suitable for automatically processing files produced by
any popular program, we found it important to correctly handle non-consecutive conformers.

iotbx.pdb.hierarchy

When developing the procedure capable of handling the variety of real-world situations shown above,
we strived to keep the underlying rule-set as simple as possible and to avoid highly specific heuristics
(e.g. "water is never covalently bound"). Complex rules imply complex implementations, are difficult to
explain and understand, tend to lead to surprises, and are therefore likely to be rejected by the
community. With this and the real-world situations in mind, we arrived at the following primary
organization of the PDB hierarchy:

Primary PDB hierarchy:

model(s)
id
chain(s)
id
residue group(s)
resseq
icode
atom_group(s)
resname
altloc
atom(s)
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In this presentation the "(s)" indicates a list of objects of the given type. i.e. a hierarchy contains a list of
models, each model has an "id" (a simple string) and holds a list of chains, etc.

Comparing with the "first approximation hierarchy" above, the residue type is replaced with two new
types: residue_ group and atom_group. These types had to be introduced to cover all the real-
world cases shown above. The residue group and atom_group types are new and unusual. Before
we go into the details of these types, it will be helpful to consider the bigger picture by introducing the
alternative secondary view of the PDB hierarchy:

Secondary view of PDB hierarchy:

model(s)
id
chain(s)
id
conformer(s)
altloc
residue(s)
resname
resseq
icode
atom(s)

This organization is probably more intuitive at first. The first two levels (model, chain) are exactly the
same as in the primary hierarchy. Each chain holds a list of conformer objects, which are
characterized by the altloc character from column 17 in the PDB ATOM records. A conformer is
understood to be a complete copy of a chain, but usually two conformers share some or even most
atoms. A residue is characterized by a unique resname and the resseg+icode.

The secondary view of the hierarchy evolved in the context of generating geometry restraints for
refinement (e.g. bond, angle, and dihedral restraints), where this organization is most useful. It is also
the organization introduced in Grosse-Kunstleve et al. (2006), where it was actually the primary
organization. While working with the conformer-residue organization, we found that it is difficult to
manipulate a hierarchy (e.g. add or delete atoms) in obvious ways. Finally, while developing the
automatic generation of constrained occupancy groups for alternative conformations, the conformer-
residue organization proved to be unworkable. The main difficulty is that the relative order of residues
with alternative conformations is lost in the conformer-residue organization; it is only given indirectly
by interleaved residues with shared atoms -- if they exist. As convenient as the conformer-residue
organization is for the generation of restraints, it is a hindrance for other purposes.

The names for the new types in the primary hierarchy were chosen not to collide with the secondary
view. We could have used "conformer" and "residue" again, just reversed, but there would be the
big surprise that one residue has different resnames. To send the signal "this is not what you usually
think of as a residue”, we decided to use residue_group as the type name. A residue group holds a
list of atom group objects. All atoms in an atom group have the same resname and altloc.
Therefore "resname_altloc_group" would have been another plausible name, but we favored
atom_group since it is more concise and better conveys what is the main content.

Detection of residue groups and atom groups

When constructing the primary hierarchy given a PDB file, the processing algorithm has to detect
models, chains, residue groups, atom groups and atoms. Most steps are fairly straightforward, but none
of the steps is actually completely trivial. For example, what to do if TER or ENDMDL cards are missing?
What if residue sequence numbers are not consecutive? The ribosome community widely uses segid
instead of chain id (even though the segid column is officially deprecated by the PDB). What if a file
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contains both chain id and segid? Documenting all our answers in full detail is beyond the scope of
this article (and would be more distracting than helpful anyway because the source code is openly
available). Therefore we concentrate on the most important rules for the detection of residue groups
and atom groups.

Then central conflict we had to resolve was:

* Inorder to handle non-consecutive conformers, we have to use the resseqg+icode to find and
group related residues.

* However, we cannot use the resseqg+icode alone as a guide, because we also want to handle
chains with duplicate resseg+icode (consecutive or non-consecutive).

This lead to a two stage procedure. In the first stage:

* Aresidue group is given by a block of consecutive ATOM or HETATM records with identical
resseg+icode columns (SIGATM, ANISOU, and SIGUI] records may be interleaved), e.g.

ATOM 234 H ATRP A 11 20.540 12.567 33.741 0.50 7.24 H
ATOM 235 HA ATRP A 11 20.771 12.306 36.485 0.50 6.28 H
ATOM 244 N CPHE A 11 20.226 13.044 34.556 0.15 6.35 N
ATOM 245 CA CPHE A 11 20.950 12.135 35.430 0.15 5.92 C
However, there is an important pre-condition:
* Unless a sub-block of ATOM records with identical resname+resseqg+icode columns
contains a main-conformer atom (almost "blank altloc"), e.g.

HEADER ANTIBIOTIC RESISTANCE 07-MAY-97 1AJQ

CRYST1 52.120 65.080 76.300 100.20 111.44 105.81 P 1 1

HETATM 6097 CA CA 1 5.676 34.115 52.446 1.00 18.50 CA
HETATM 6100 C2 SPA 1 11.860 36.159 33.853 1.00 14.30 C
HETATM 6107 C6 SPA 1 13.085 36.522 34.644 1.00 17.34 C

In this case the sub-block is assigned to a separate residue group.

Within each residue group, all atoms are grouped by altloc+resname and assigned to atom groups.
The order of the atoms in a residue group does not affect the assignment to atom groups.

After all atom records are assigned to residue groups and atom groups,

* residue groups with identical resseg+icode
¢ that do not contain main-conformer atoms

are merged in the second processing stage. While two residue groups are merged, atom groups with
identical altloc+resname from the two sources are also merged.

Note that the grouping steps in this process may change the order of the atoms. However, our
implementation preserves the relative order of the atoms as much as possible. Le. in the hierarchy,
resseg+icode appear in the original "first seen" order, and similarly for altloc+resname within a
residue group.

Construction of secondary view of hierarchy

The secondary view of the hierarchy is constructed trivially from the primary hierarchy objects. For
each chain, the complete list of altloc characters is determined in a first pass. In a second pass, a
conformer object is created for each altloc, and a second loop over the chain assigns the atoms to
each conformer. Main-conformer atoms are assigned to all conformers, atoms in alternative
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conformations only to the corresponding conformer. Because of the difficulties alluded to earlier, the
conformer and residue objects in the secondary view are "read-only". l.e. all manipulations such as
addition or removal of residues, have to be performed on the primary hierarchy. Re-constructing the
secondary view after the primary hierarchy has been changed is very fast (fractions of seconds even for
the largest files, e.g. 0.22 s for PDB entry 1HTQ with almost one million atoms).

The iotbx/examples/pdb hierarchy.py script shows how to construct the primary hierarchy
from a PDB file, and how to obtain the secondary view.

Nomenclature related to alternative conformations
The iotbx.pdb module uses the following nomenclature to describe various aspects of alternative
conformations:

*  Main conf. atom : an atom with
o ablank altloc character
o and no other atom with the same name+resname (but different altloc) in the residue
group. This second condition is needed for cases like this:

HEADER HYDROLASE 12-MAR-04 1s07

ATOM 2460 CG1 VAL A 325 -23.284 97.713 15.815 0.66 21.74 C
ATOM 2461 CGI1AVAL A 325 -23.010 97.616 18.295 0.66 22.88 C
ATOM 2462 CG2BVAL A 325 -24.819 96.373 17.146 0.66 22.57 C

* Alt. conf. atom : not main conf.
* Conformer : a complete chain with main conf. atoms and alt. conf. atoms with a specificaltloc.

Note for completeness: it is also possible to obtain conformers of an individual residue group.
However, conceptually this is best viewed as a shortcut for first obtaining the conformers of a
chain, and then finding the residue of interest in each conformer, ignoring all other residues.

* Residue : complete residue in a conformer with main conf. atoms and alt. conf. atoms.
Residues are classified as follows:

* pure main conf. : all main conf. atoms

* pure alt. conf.: all alt. conf. atoms

* proper alt. conf.: both main conf. atoms and alt. conf atoms, all alt conf. atoms have a non-blank
altloc column

* improper alt. conf. : both main conf. atoms and alt. conf atoms, one or more alt conf. atoms have
ablank altloc column (as shown in the 1SO7 fragment above).

Errors and warnings

The tools in iotbx.pdb are designed to be as tolerant as reasonably possible when processing input
PDB files. E.g., as of Jun 8 2010, all 65802 files in the PDB archive can be processed without generating
exceptions. However, to assist users and developers in creating PDB files without ambiguities, the
hierarchy object provides methods for flagging likely problems as errors and warnings. It is up to the
application how to react to the diagnostics.

The phenix.pdb.hierarchy command can be used to quickly obtain a summary of the hierarchy in
a PDB file and some diagnostics. This example command highlights all main features:

phenix.pdb.hierarchy pdbljxw.ent.gz
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Output:

file pdbljxw.ent.gz
total number of:

models: 1
chains: 2
alt. conf.: 5
residues: 49
atoms: 786
anisou: 0

number of atom element+charge types:
histogram of atom element+charge frequency:

" H
" C
"0
" N
"s

"

"

"

"

"

383
261
77
59
6

residue name classes:
"common_amino_acid" 48
"other"
number of

histogram
. |
"A" 1

number of

histogram
"A" 2
"B" 2
"c" 1

chain ids: 2

of chain id frequency:

1

alt. conf. ids:

of alt. conf.

id frequency:

3

residue alt. conf. situations:
pure main conf.:
pure alt. conf.:
proper alt. conf.:
improper alt. conf.:

chains with mix of proper and improper alt. conf.:

32
3
14
0

number of residue names:

histogram of residue name frequency:

"cys”

### WARNING: consecutive residue_groups with same resid ###
number of consecutive residue groups with same resid:

6

F R RFREFNMNMDNODDNDWWSO O OO

1

other

residue group:

"ATOM

"ATOM

378 N

16

PRO A

12 atoms not shown

391 HD3APRO A

next residue group:

"ATOM

"ATOM

392 CB BSER A
6 atoms not shown
399 HB3CSER A

residue group:

"ATOM

"ATOM

432 N

LEU A

18 atoms not shown

439 CDICLEU A

next residue group:

"ATOM

"ATOM

452 CGI1BILE A

13 atoms not shown

466 HD13CILE A

22

22

22

25

25

25

-*-

5

N

H

0

2
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The diagnostics are mainly intended for PDB working files, but we have tested the iotbx.pdb module
by processing the entire PDB archive. (This took about 3700 CPU seconds, but using 40 CPUs the last job
finished after only 277 seconds. Disk and network 1/0 is rate-limiting in this case, not the performance
of the PDB handling library.) The results are summarized in the following table:

Total number of .ent files: 65802 (2010 Jun 8)

56873 WARNING: duplicate chain id

WARNING: consecutive residue groups with same resid

ERROR: duplicate atom labels

ERROR: improper alt. conf.

ERROR: duplicate model id

ERROR: residue group with multiple resnames using same altloc

OO NW

About 86% of the PDB entries re-use the same chain id for multiple chains (which are either separated
by other chains or TER cards). In many cases, the re-used chain id is the blank character, which is clearly
a minor issue. However, we flag this situation to assist people in producing new PDB files with
unambiguous chain ids.

The next item in the list, "consecutive residue_groups with same resid" (where
resid=resseqg+icode), was mentioned before. This situation is best avoided to minimize the
chances of mis-interpreting the PDB files.

"duplicate atom labels" pose a serious practical problem (therefore flagged as "ERROR") since it is
impossible to uniquely select atoms with duplicate labels, for example via an atom selection syntax as
used in many programs (CNS, PyMOL, PHENIX, VMD, etc.) or via PDB records in the connectivity
annotation section (LINK, SSBOND, CISPEP). Atom serial numbers are not suitable for this purpose since
many programs do not preserve them.

Only one PDB entry (1JRT) includes "improper alt. conf." as introduced in the previous section.

There are no PDB entries with two other potential problems diagnosed by the iotbx.pdb module. MODEL
ids are unique throughout the PDB archive (as an aside: and all MODEL records have a matching
ENDMDL record). Finally, in all 74 files with mixed residue names (i.e. conformers with different
sequences), there is exactly one residue name for a given altloc.
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Introduction

We have implemented simple, automatic restraints for common secondary structure elements in
proteins and nucleic acids, which can help reduce over-fitting at low-to-moderate resolution and
preserve the secondary structure geometry that can be distorted due to the low resolution. Internally,
these are simply distance restraints between hydrogen-bonding atoms in helices, sheets, or nucleic acid
base pairs, with or without explicit hydrogens. The current method has the advantage of being fast,
easily reduced to relatively simple input parameters, and useful for improving poor-quality regions of
structure where the bonding may not be automatically recognized.

General description and syntax

A new command for identifying secondary structure and generating the necessary parameters,
phenix.secondary_structure restraints, was introduced in version 1.6.1, and most of the
functionality is also accessible through phenix.refine itself. In the absence of user-defined atom
selections, or if the parameter £ind automatically=True is set, the program will look first in the
header of the input PDB file(s) and parse any HELIX and SHEET records (Figure 1). Note that when

HELIX 8 8 ASP A 181 ARG A 191 1 11
HELIX 9 9 SER A 192 ASP A 194 5 3
HELIX 10 10 SER A 195 GLN A 209 1 15
SHEET 1 A5 ARG A 13 ASPA 14 O

SHEET 2 A5 LEUA 27 SERA 30 -1 O ARG A 29 N ARG A 13

SHEET 3 A 5 VAL A 156 HIS A 159 1 O VAL A 156 N PHE A 28

SHEET 4 A5ASPA 51 ASPA 54 1 N ALA A 51 O LEU A 157

SHEET 5 A5ASPA 74 LEUA 77 1 O HIS A 74 N VAL A 52

Figure 1. Beta PDB syntax for secondary structure records (excerpted from PDB ID 1ywf; Grundner et al. 2005).

running from phenix.refine, a different scope requires the use
secondary_ structure.input.find automatically=True. If none are found, the open-source
program KSDSSP (UCSF Computer Graphics Laboratory; Kabsch & Sander 1983) is used to generate
these records based on the input geometry. Because the PDB format uses fixed columns (Bernstein et al.
1977, Berman et al. 2000) and is not easily edited, the records are converted to an intermediate format
using the same parameter syntax and atom selection language as other programs in PHENIX (Figure 2;
Adams et al. 2010). Example of use:

phenix.secondary structure restraints model.pdb > ss.eff

Although the PDB format specification provides for ten types of alpha helix, only the three most
commonly found in natural proteins are processed: alpha (forming bonds between the carbonyl oxygen
of residue n and the amide nitrogen of residue n+4), 310 (n+3), and pi (n+5). As the alpha form is by far
the most common, this is the default helix type. Beta strands have only two types, parallel and
antiparallel, which can coexist in a single sheet (Figure 3). The parameter blocks for sheets are
considerably more complicated because of the order-dependency of individual strands, and the
requirement of explicit annotation of the start and end of hydrogen bonding between strand pairs. The
parameters may be freely edited to add or remove secondary structure groups, but we recommend
minimal changes to the sheets, due to the complexity of the definitions.
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From within phenix.refine (Afonine et al. 2005), use of the restraints may be activated with the
parameter main.secondary structure_restraints=True. If no helix or sheet atom selections

are included in the input parameters, the
automatic identification procedure will

be run; otherwise, the existing
parameters are used without
modification. Once secondary structure

is assigned it is maintained for the rest of
the refinement, but future versions will
probably add the option to re-annotate
the structure after each macro-cycle. The
log file (and console output) will contain
information about the overall secondary
structure content, if any.

Hydrogen bond parameterization
Hydrogen bonds are modeled as simple
harmonic restraints; we have not
attempted to use a more physically
rigorous hydrogen-bonding potential (for
example, Fabiola et al. 2002). For
maximum flexibility, either explicit or
implicit hydrogen bonds are supported;
the latter use a longer distance restraint
between heavy atoms. The methods for
converting atom selections into hydrogen
bonds relies on several assumptions:

* The order of residues in the input
PDB file exactly corresponds to the
order in the protein itself

* Each secondary structure element is

continuous with no missing residues
* All residues are complete, with no
missing atoms

Unless the PDB file has undergone
significant manual editing, these
conditions are unlikely to be violated.
The main exception is in the handling of
hydrogen atoms, which are handled
inconsistently by different
crystallography  applications. The
program will first examine the PDB file to
determine whether hydrogens are
present, in which case it defaults to
explicit hydrogen bonds. However, if

newly built residues are missing
hydrogen atoms, they will not be
properly restrained. This can be
remedied by running

refinement.secondary_structure {

helix {

selection = "chain 'A' and resseq 181:191"
}
helix {

selection = "chain 'A' and resseq 192:194"

helix type = alpha pi *3_10 unknown
}

helix {
selection = "chain 'A' and resseq 195:209"
}
sheet {
first_strand = "chain 'A' and resseq 13:14"
strand {
selection = "chain 'A' and resseq 27:30"
sense = parallel *antiparallel unknown
bond_start_current = "chain 'A' and resseq 29"
bond_start_previous = "chain 'A' and resseq 13"
}
strand {
selection = "chain 'A' and resseq 156:159"
sense = *parallel antiparallel unknown
bond_start_current = "chain 'A' and resseq 156"
bond_start_previous = "chain 'A' and resseq 28"
}
strand {
selection = "chain 'A' and resseq 51:54"
sense = *parallel antiparallel unknown
bond_start_current = "chain 'A' and resseq 51"
bond_start_previous = "chain 'A' and resseq 157"
}
strand {
selection = "chain 'A' and resseq 74:77"
sense = *parallel antiparallel unknown
bond_start_current = "chain 'A' and resseq 74"
bond_start_previous = "chain 'A' and resseq 52"

}
}
}

Figure 2. Equivalent phenix.refine parameters to Figure 1.

A14 A27

W «
¥LV'L"l._=‘ Q“qQ ® e
VY, o=
AT74
A 51

A 156

Figure 3. Beta sheet specified by the parameters in Figure 2, as
rendered in PyMOL. (Sidechains have been omitted for clarity.)
Note that not all residues annotated as belonging to strands
actually form hydrogen bonds; the actual bonding pattern is
dictated by the bond_start_current and
bond_start_previous parameters for each strand.
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phenix.ready_ set prior to refinement to completely add hydrogens to the structure. You can also
force phenix.refine to ignore any hydrogens present and use the implicit bonds by passing the
parameter substitute n_for h=True.

All settings related to the configuration of hydrogen bonding are located in the h_bond restraints
block!. Currently, the distances used are as follows (N-O distances taken from Fabiola et al. 2002):

e explicit (H-0): 1.9754

e H-O outlier cutoff: 254
 implicit (N-0): 2.9 A

e N-O outlier cutoff: 3.54

Both explicit and implicit bonds default to a sigma (standard deviation - essentially an inverse weight)
of 0.05, and a slack of 0. Increasing the sigma reduces the strength of the bond restraints; increasing the
slack allows it to move freely within a small range (+/- slack in either direction) before the restraint is
applied. Initial experiments do not indicate any advantage to using a non-zero slack, but lower sigma
values (e.g. 0.02) are beneficial in some cases, especially where explicit hydrogens are used. You may
also override the global defaults and set separate sigma and slack values for each secondary structure

group.

Once the hydrogen bonds have been identified, a short summary will be printed out to the log
file/console:

109 hydrogen bonds defined.
Distribution of hydrogen bond lengths without filtering:
2.7259 - 2.8381: 7

2.8381 - 2.9504: 38
2.9504 - 3.0626: 38
3.0626 - 3.1748: 11
3.1748 - 3.2870: 7
3.2870 - 3.3993: 5
3.3993 - 3.5115: 0
3.5115 - 3.6237: 0
3.6237 - 3.7360: 1
3.7360 - 3.8482: 2

If annotation errors are present, the calculated bond lengths may cover a much wider range. For this
reason, all outliers above a specified cutoff are filtered out before building the geometry restraints.
Passing the parameter remove outliers=False will override this, and in some instances may
actually be beneficial, but we recommend visually inspecting the hydrogen bonds first to confirm that all
are chemically appropriate. (This can be done in PyMOL; see instructions below.) After filtering, the
output shown above will be repeated for the final bond list.

Nucleic acid base pairing

Version 1.6.2 adds partial support for hydrogen bond restraints between RNA base pairs (Figure 4)
while more complete is in later nightly builds. Like CNS (Briinger et al. 1998), these are specified
individually rather than as contiguous ranges. The automatic detection and hydrogen bond
parameterization follows a similar procedure to that used for proteins, except that the all-atom contact
analysis program PROBE (Word et al. 1999) is used to identify explicit hydrogen bonds, and a simplified
list of base pairs is derived from these results. Only canonical Watson-Crick base pairs and GU pairs are
supported at this time. Future versions will incorporate other known base pairings, classified according

1 These parameters are used by both phenix.secondary_structure_restraints and phenix.refine; for the latter, the full scope
name is actually refinement.secondary_structure.h_bond_restraints, but individual parameters passed as command line
arguments should be recognized automatically.
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to geometry as suggested by Leontis
et al. (2002), versus the older
Saenger (1984) Roman numeral
nomenclature, which is no longer
complete.

For users who require a more
complete set of hydrogen bonds, we
recommend the server provided by
the Noller Lab at UcscC
(http://rna.ucsc.edu/pdbrestraints/;
Laurberg et al. 2008), which analyzes
a PDB file and produces output in the
custom bond format for
phenix.refine. Note that we do
not currently have any equivalent to
“stacking restraints” available in

PHENIX;  additionally, although
individual bases already have tight
planarity restraints, the base pairs
are not forced to be planar.

Figure 4. Automatically detected hydrogen bonds in a mixed
protein-RNA structure, the signal recognition particle (PDB ID
1hql; Batey et al. 2001).

Known limitations

The primary obstacle to generating these restraints is the difficulty of obtaining correct and complete
annotations. The records in the PDB are often misleading and/or wrong; unfortunately, the annotations
provided by KSDSSP are also occasionally incorrect. Common errors include two or more independent
but adjacent helices being annotated as a single alpha helix, despite 902 bends or a 310 helix in between.
Both KSDSSP and PROBE are also very sensitive to input geometry, which means that poorly refined
and/or manually built structures will not have all secondary structure elements detected automatically.
For these situations, careful manual annotation is essential to maximize the usefulness of the added
restraints. Work is underway on a graphical editor for picking secondary structures in a model (see also
http://pymolwiki.org/index.php/ResDe for another approach).

At low resolution, a more serious problem is the lack of additional restraints on backbone conformation
outside of regular secondary structure elements. When refining against data significantly worse than
3.04, Ramachandran outliers frequently comprise several percent of protein residues (0.2% is the limit
recommended by Molprobity). Although phenix.refine does not currently offer Ramachandran
restraints, version 1.6.2 introduces the separate option of restraining the model conformation to that of
a high-resolution reference structure.

Additional caveats:

* No attempt is made to reconcile secondary structure restraints with NCS restraints. As always, care
should be taken to exclude regions of genuine difference from NCS atom selections.

* Only bond length is restrained; angles may move freely (although in practice, other geometry
restraints should limit the range of angles compatible with the specified bond length).

* Support for PDB files containing non-blank insertion codes is currently limited, especially if an
insertion code occurs in the middle of a secondary structure element.

* The distribution of oxygen-nitrogen distances in beta sheets appears to be very slightly bimodal,
probably due to the difference in geometry between parallel and antiparallel sheets. Increasing the
slack may compensate for this, but it isn't clear whether this is necessary. Future versions may use
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more intelligent distance parameters.

* Secondary structures which cross symmetry-related elements are not supported; this may
occasionally happen with palindromic DNA or RNA helices. However, the custom bond syntax for
phenix.refine may be used to manually specify hydrogen bonds.

* For extremely large structures (e.g. ribosomes), where the number of chains exceeds the number of
available single-character codes, we encourage the use of two-character codes, which are also
supported by Coot. However, if you prefer to use the deprecated seglD, the parameters
preserve protein segid=True and preserve nucleic_acid_segid=True will include
the seglDs in the output atom selections when identifying new secondary structure elements. (You
do not need these parameters to run phenix.refine with the atom selections containing seglDs.)

* Detection of nucleic acid base pairs will only be run if RNA or DNA chains are identified in the PDB
file. Some highly-modified RNA molecules such as tRNA may fail this procedure; for these cases, the
parameter force_nucleic_acids=True provides a workaround.

Other uses

Two other output formats are available for the secondary structure restraints, albeit with more limited
support: PyYMOL commands for visualization (DeLano 2002), and distance restraints for REFMAC
(Murshudov et al. 1997). A PDB file is required as input, with pre-defined atom selections optional. The
same procedures described above for outlier filtering and atom selection are applied, so the final output
should be identical to what would be obtained running phenix.refine with the same parameters.

*  PyMOL format:
phenix.secondary_structure_restraints model.pdb \
[restraints.eff] format=pymol > h bonds.pml

* Example of output:
dist (chain 'A' and resi 9 and name N), (chain 'A' and resi 6 and name O)

* REFMAC format:
phenix.secondary_structure_restraints model.pdb \
[restraints.eff] format=refmac > restraints.com

* Example of output:
exte dist first chain A residue 37 atom O \
second chain A residue 41 atom N value 2.900 sigma 0.05

Restraints for REFMAC can be included as part of the input keywords; for PyYMOL, once the PDB file is
loaded distance objects can be created by selecting “Run. . .” from the “File” menu and selecting the
.pml script, or by typing (for example) “@/path/to/script/h bonds.pml” at the PyMOL>
prompt. (For clarity, you may want to enter the command “hide labels” after running the script.)

Additional resources
* KSDSSP (included in PHENIX distribution):
http://www.cgl.ucsf.edu/Overview/software.html#ksdssp
* ResDe (custom bond parameter editor for PyMOL):
http://pymolwiki.org/index.php/ResDe
* Base pairing restraints generator (Noller Lab):
http://rna.ucsc.edu/pdbrestraints/
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Synopsis

This article documents the program distl.signal_ strength, used to locate candidate Bragg spots
on X-ray diffraction images for macromolecular crystallography. While standalone analysis requires
about 3 seconds/image on typical Linux systems, an order of magnitude increase in the overall
throughput can be achieved using concurrent multiprocessing within a client/server implementation.
The program is thus suitable for the rapid location of the best-diffracting positions within the crystal
sample using a low-dose X-ray probe.

Introduction

The development of microfocused X-ray beams at synchrotron facility endstations has made it possible
to obtain higher-signal, lower mosaicity datasets from small crystal samples (Fischetti et al, 2009).
With small crystal dimensions of order 5 pm (matched to the diameter of present microbeams), it may
be necessary to examine numerous specimens in order to assemble a complete dataset, making it highly
desirable to automate the process of centering each sample in the microbeam. Various approaches have
been proposed (Pothineni et al., 2006; Song et al., 2007), and it has been possible to automatically center
the sample-holding loop (or other device) using videomicroscopy. However, it has been more difficult to
visually identify small crystals within the loop, thus requiring the more robust approach of scanning the
sample (translating it with respect to the microbeam), so as to collect a low-dose diffraction image at
each translational position. It has been noted that such X-ray based autocentering may take up to 10
minutes for the smallest crystals (Song et al, 2007), which presumably require very fine rastering to
locate. This outcome could be improved dramatically by the use of a photon-counting pixel array
detector such as the Pilatus-6M that supports a framing rate of 10 Hz. An accompanying challenge is to
write software that can quantify the measured signal at a reasonably high turnaround rate, so that the
diffraction analysis can keep pace with the rapid data acquisition needed for fine-grained coverage of
the sample.

The standalone spotfinder program and client/server pair described below are meant to provide a
toolbox for rapid diffraction analysis within the beamline computing environment. The software
architecture is the same as described for the cctbx package (http://cctbx.sf.net; Grosse-Kunstleve et al,
2002), with a high-level Python scripting interface that is meant to encourage the reuse and adaptation
of code as the problems change. One example is that new detector hardware types can be readily
supported as they are introduced.

Installation

The spotfinder program is bundled and distributed with the packages LABELIT and PHENIX, and can
therefore be downloaded from either Web site (http://cci.lbl.gov/labelit/ or http://www.phenix-
online.org/). Newest-version PHENIX installers are released on an almost daily basis, while LABELIT
releases currently cycle every few months. Follow the installation instructions, and source the
appropriate setup file (given in the message printed by the installer) to place the command-line
dispatchers on path.

Command line reference
Use the command distl.signal strength to produce a quick summary of the diffraction
characteristics from a single diffraction exposure:
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Usage:
distl.signal_ strength image filename [parameter=value [parameter2=value2

vee]]
Example:
distl.signal strength lysozyme 00l.img distl.res.outer=2.0

Optional command line parameters change the program operation as follows (Default values are shown):

distl.res.outer=None

If specified, this is the outer (high) resolution limit to be used for the diffraction analysis, in Angstroms.
This option is useful for two reasons. Firstly, if a large number of images from the same crystal
specimen are to be examined (in order to locate the best-diffracting position), then placing a uniform
limit on the resolution range permits the number of observed Bragg spots to act as a good proxy of the
diffraction strength. Secondly, areas on the image that are outside the outer resolution limit are not
analyzed, potentially producing a substantial speedup in program throughput. [Note: areas on the
stored image that are not part of the active detector are already excluded from analysis. Examples are
the corner areas on circular image plates (such as the Mar), the inactive pixel stripes between fiber-optic
tapers on CCD detectors (such as the ADSC), and the inactive pixel stripes between modules of the
Pilatus detector.] Camera parameters such as the sample-to-detector distance and swing-arm angle are
taken from the file header, to calculate the resolution at each pixel.

distl.res.inner=None

If specified, this is the inner (low) resolution limit to be used for the diffraction analysis, in Angstroms.
Excluding the low-resolution Bragg spots may be a potential workaround if there is severe beam leakage
around the beam stop masquerading as a Bragg signal. However, the built-in heuristics that filter out
unusually-large signal areas and very intense signals will normally exclude such artifacts anyway. The
inner resolution cutoff has no effect on overall program throughput, as the filter is applied after the
image is analyzed. This program option is only recommended for unusual situations.

distl.minimum signal height=[1.5 for CCDs; 2.5 for pixel-array detectors]

This parameter determines whether a given pixel is classified as background or signal. Active pixels are
classified within non-overlapping 100x100-pixel tiles. For each tile, the best-fit plane is chosen to
represent the background level. Pixel heights are distributed above and below this plane with a normal
distribution whose standard deviation o is readily calculated. Pixels higher than
minimum signal heightxc above the background are classified as signal. Two successive rounds
(now with 50x50-pixel tiles) are employed to remove the signal pixels from the background level. With
CCD detectors the longstanding default of 1.5¢ has been a highly successful compromise between
increased sensitivity (favoring a lower cutoff) and better noise discrimination (favoring a higher cutoff;
any cutoff lower than 1.25¢ produces numerous false Bragg spots). For pixel-array detectors, which
lack any significant point-spread function, 2.5¢ gives better results and is now the pixel-array default.
Images from very long unit cells (viruses, ribosomes) potentially have close spots that run into each
other, without being separated down to the baseline. The heuristic rules in dist1 will reject these close
signals, and in severe cases this will interfere with the ability to index the lattice. The solution is to raise
the cutoff level to as high as 5c, thus correctly separating the close spots. It is therefore important to
consider raising the minimum_signal height if the crystals have a large unit cell. At present there is
no automatic way to do this; the program has no way to know the cell length ahead of time. In the future
it will be beneficial to add some preliminary noise analysis to provide more sophisticated guidance for
spot detection.
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distl.minimum spot area=None [5 for pixel-array detectors, 10 otherwise]

If specified, this is the minimum number of contiguous pixels that is considered to be a spot. For image
plate and CCD detectors the hard-coded default is 10 pixels/spot. With pixel-array technology, spots are
much narrower due to the sharp point-spread function, but they are still generally distributed over a
few pixels. The pixel-array default is therefore set to 5 pixels/spot. Synchrotron beamlines
experimenting with new detectors or optics should test this parameter to find the optimum setting!

verbose=False

If True, the program will output detailed statistics on all Bragg spots and show signal pixel locations.
This is potentially useful for beamline commissioning.

pdf output=None

If specified, this is the filename (*.pdf) for an optional PDF-format graphical output showing the image
and associated Bragg signals. This visual output is the most direct way to understand the "big picture"”
of what the program results mean. Comparing one's own visual impression of the diffraction image with
the marked up spotfinder results will reveal whether the program has missed real Bragg spots (false
negatives) or overinterpreted bad signals (false positives). The contrast level is pre-set internally. Pink
stripes are used to color-code the inactive areas between detector modules (for the Pilatus), and red
squares (again for the Pilatus) are inactive pixels, which should be the same on every image for a given
instrument. Within Bragg spots, color circles indicate that the spot has been tagged as a "good Bragg
spot candidate" (see below). Pink circles tag the position of the maximum pixel, and red circles show
the spot center of mass.

--help
Produces an informative program synopsis.

Program operation and output

Computational steps performed by the program have already been described in several publications
(Zhang et al, 2006; Sauter et al., 2004; Sauter & Zwart, 2009; Sauter & Poon, 2010). Typical results
written to stdout are as follows:

File : 0_clmtr_edge 403.cbf
Spot Total : 177
In-Resolution Total : 170
Good Bragg Candidates : 157
Ice Rings : 1
Method 1 Resolution : 2.55
Method 2 Resolution : 2.08
Maximum unit cell : 108.9
$Saturation, Top 50 Peaks : 0.09
In-Resolution Ovrld Spots : 0

Bin population cutoff for method 2 resolution: 20%

Number of focus spots on image #403 within the input resolution range: 170
Total integrated signal, pixel-ADC units above local background (just the good Bragg candidates) 147322
Signals range from 37.2 to 11773.1 with mean integrated signal 997.2
Saturations range from 0.0% to 0.7% with mean saturation 0.0%
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Three types of spot count are listed:

+ "Spot Total" is the number of separate spots that rise above the minimum thresholds for signal
height and spot area. A graph of average pixel intensity vs. resolution is examined to prefilter likely
ice rings.

* "In-Resolution Total" is the subset remaining after high- and low-resolution filters are applied. The
command-line distl.res filter is applied here (if given), as well as the "Method 2 Resolution" filter
described below.

+ "Good Bragg Candidates" are the spots remaining after the application of several spot-quality
heuristics:

o A histogram of spot count vs. resolution is used to implement a second filter for ice rings.
o Spots with ill-defined profiles having more than two signal maxima are not counted.

o Outliers in intensity, area, eccentricity and skewness are thrown away.

o Spots with too-close nearest neighbors are filtered.

Limiting resolution is estimated by the two methods defined in Zhang et al. (2006). Method 2 is used to
choose spots for LABELIT autoindexing. It relies on the ability to produce a histogram of spot count vs.
resolution, and therefore requires a minimum number of spots (usually 25). The resolution cutoff is
determined by noting the falloff in bin population at higher diffraction angles. The maximum unit cell is
estimated by observing nearest-neighbor distances and assuming that the closest spacing corresponds
to the largest unit cell length.

"In-resolution” spots are used to produce several signal strength metrics: "% Saturation"”, "In-

Resolution Overloaded Spots”, "Signals range" and "Saturations range".

A final "Total integrated signal" metric is computed on the "Good Bragg Candidates”. This value is the
summed signal height (corrected for background) over all signal pixels. ADC units are analog-to-digital
units, as recorded in the raw image file.

Performance assessment for crystal positioning

To position the crystal optimally in the beam, we aim to translate the sample to the position that
maximizes the total number of good Bragg spots, or average intensity of Bragg spots, within a given
resolution range. Low-dose X-rays can be used to perform this raster scan over the sample, as described
(Song et al,, 2007). Very high throughput is achieved with shutterless exposures using a Pilatus-6M
detector. However, the resulting turnaround time of about 0.2 seconds/image places very high
performance requirements on the computational pipeline; which typically takes about 3 seconds to
process one image. The magnitude of the challenge can be assessed by profiling the spotfinding code, as
is done here with a 64-bit, 2.9 GHz Xeon machine running Fedora Core 8. The processor was equipped
with 32 GB RAM and 16 CPU cores, although only one core was used by the single-threaded spotfinder
process:

Computational step Typical time/image Comments

Load the dynamic libraries 0.50 sec Client/server removes this overhead
Read file from NFS disk 0.70 sec Local file I/0 takes only 0.04 sec
Uncompress CBF image to memory 0.27 sec cctbx-optimized code takes only 0.09 sec
Classify pixels: background/signal 0.63 sec

First ice ring filter 0.23 sec

Find all spots 0.14 sec

Second ice ring filter 0.15 sec

Additional heuristics for good spots 0.15 sec

Total time: 2.77 sec
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Client-server architecture

The above-listed performance data show that an order-of-magnitude improvement is needed to keep
pace with Pilatus-6M acquisition. We therefore move to a client-server architecture that eliminates the
need to reload the dynamic libraries for each image (since the server process is persistent), and runs
with multiple processes, so that numerous images may be processed concurrently within separate
cores. At present, 16-core CPUs are available for under $6000, so they are within reach of beamline
operating budgets. With this scheme it is easy to achieve the desired 0.2 second/image total
throughput.

Server:

distl.mp spotfinder server read file [parameter=value ... ]

The program operates as a multithreaded server. Allowed parameters are:

* distl.port=8125 (Required) The server will listen for requests on this port.

* distl.processors=1 (Required) The total number of processes to be forked to listen for
requests.

* distl.minimum_spot_area=same as above, the minimum spot area in pixels.

* distl.minimum_signal_ height= same as above, the minimum signal height.

e distl.res.outer=same as above, the outer resolution limit in Angstroms.

Client:

distl.thin client <filepath> <host> <port>

No keyword parameters are allowed. The client simply takes the filepath (must be a valid filepath on
the server machine), host name (usually "localhost") and port number, and outputs the spot analysis to
stdout.

Notes:

The server can be killed from the command line by Ctrl-C, or via the client by sending the message:

distl.thin client EXIT <host> <port>

While the server is supposed to queue requests, too many at once can cause some requests to drop out,
in a manner that is not fully characterized. Therefore in the example given (<path to
sources>/spotfinder/servers/thin client.csh),a /bin/sleep command is used to time the
requests at a reasonable pace given the particular server host and number of processes. In application,
it is the responsibility of the caller (the beamline data collection process) to avoid overloading the
server with too many simultaneous requests.

LABELIT contains a separate program (labelit.dist1l) to perform a similar spot finding function for
use in autoindexing. That implementation is not suitable for multiprocessing because it writes the spot
list to disk in the current working directory under a constant file name. The file can be erased with the
command labelit.reset.

In contrast, distl.signal_ strength and distl.mp spotfinder server read file perform
all work in memory without any file output.

Results
Low-dose exposures were used to probe samples on a 5 x 6-position grid (Diamond, ADSC detector) or a
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5 x 5-position grid (SSRL, Pilatus-6M). Images were visually inspected to produce a subjective rank for
each exposure, taking into account factors such as the limiting resolution and strength of the Bragg
spots. Separately, the images were analyzed with the automated spotfinder process, using an up-front
resolution limit (distl.res.outer) of 3.0 A.

An automated ranking scheme was developed that is consistent with the subjective rank from visual
inspection. The 30 or 25 images from each sample are ranked by two criteria, the "Total Integrated
Signal" in pixel-ADC units, and the count of "Good Bragg Candidates”, and the rank scores based on these
two criteria are averaged with equal weight. If two images receive the same average score, the tie is
broken by giving a higher priority to "Total Integrated Signal". No score is developed unless there is a
numerical score for "Method 2 Resolution" (although the resolution isn't actually included in the
ranking); therefore images with too few spots are not scored.

Application programming interface

The spotfinder software can be accessed directly through Python code. Although the necessary
interface is not formally documented, example usage is given by the program itself, within the <path
to sources>/spotfinder/ directory:

./command line/signal strength.py: Illlustrates the use of command-line parameters.

./applications/signal strength.py: Illustrates the core function calls, as well as the detailed
parsing of the resulting spot list.
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Introduction

This article describes the parameterization of, and refinement procedures for, Atomic Displacement
Parameters (ADPs, or B-factors), as they are implemented in the crystallographic structure refinement
program phenix.refine (Afonine et al, 2005). The algorithms and parameterizations are
implemented using an object oriented library approach and thus can be re-used in different contexts.

1. Atomic Displacement Parameters

Diffraction experiments produce data representing time- and space-averaged images of the crystal
structure: time-averaged because atoms are in continuous thermal motions around mean positions, and
space-averaged because there are often small differences between symmetry copies of the asymmetric
unit in a crystal, especially in the case of macromolecular crystals. The dynamic displacements and the
static spatial disorder lead to vanishing high-resolution data in reciprocal space and blurring of the
diffracting density (electron or nuclear) in real-space. Ignoring the displacements when modeling the
diffraction experiment would lead to a poor fit of the calculated data to the observed data. Modeling of
the small dynamic displacements as isotropic or anisotropic harmonic displacements has been a
standard practice from the earliest days of crystallography. Larger displacements (beyond harmonic
approximation) can be modeled by using an anharmonic model (Gram-Charlier expansion; Johnson &
Levy, 1974; Kendal & Stuart, 1958; not available in phenix.refine) or “alternative conformations”.

The atomic displacement is a superposition of a number of contributions (Dunitz & White, 1973; Prince
& Finger, 1973; Johnson, 1980; Sheriff & Hendrickson, 1987; Winn et al., 2001), such as:

* Local atomic vibration

* Motion due to a rotational degree of freedom (e.g. libration around a torsion bond)
* Loop or domain movement

*  Whole molecule movement

* (Crystal lattice vibrations

More detailed models can be envisioned, but in practice many of today’s refinement programs use an
approximation and separate the total ADP, Urorai, into three components:

UrotaL = Ucryst + Ucrour + ULocaL (1)

While the individual members of (1) represent different kinds of displacements, each of them can be
modeled with different accuracy or using different models. For example, local atomic vibration, Urocai,
can be modeled using a less detailed, isotropic, model that uses only one parameter per atom. A more
detailed (and accurate) anisotropic parameterization uses six parameters but requires more
experimental observations to be practical. Group atomic displacement, Ugroup, can be modeled using the
TLS parameterization (Uris) or just one parameter per group of atoms (Fig. 1).

There are a relatively large number of conventions and notations used in connection with ADPs (B, U,
U*, Ucart, Ucir, etc); see Grosse-Kunstleve & Adams (2002) for a comprehensive review. In what follows
we consistently use U assuming that the appropriate convention is used based on the context.
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2. Ucpyst

Ucryst (a symmetric 3x3
matrix) models the
common displacement of
the crystal (lattice [ I
vibrations) as a whole
and some additional ULOCAL UGROUP UCRYST
experimental anisotropic J

effects (Sheriff &

Hendrickson, 1987; Usén l I

et al, 1999). This

contribution is exactly isotropic anisotropic
the same for all atoms

and thus it possible to

treat this effect directly ,

while performing overall U U U
anisotropic scaling TLS LIB SUBGROUP

UTOTAL

(Afonine et al, 2005) to Figure 1. Hierarchy of contributions to atomic displacement parameter.
compute the total model

structure factors

htUc sh B S2
Fmodel = koverall exp _Tryt F , +k cXp —% F @

calc sol mask

Ucrysr is forced to obey the crystal symmetry constraints. phenix.refine reports refined elements of
Ucryst matrix expressed in a Cartesian basis and uses the Bcarr notation (for details, see Grosse-
Kunstleve & Adams; 2002).

3. Ugrourp

Ucroup is intended to model the contribution to UroraL arising from concerted motions of multiple atoms
(group motions). It allows for the combination of group motion at different levels (for example, whole
molecule + chain + residue) and for the use of models of different degrees of sophistication (or accuracy),
such as general TLS, TLS for a fixed axis (a librational ADP; Uyg), and a simple group isotropic model
with one single parameter. In its most general form, Ugrour can be Uris + Uuis + Ususgrour, where, for
example, Ur.s would model the motion of the whole molecule or a large domain, Usygcrour would model
the displacement of a smaller group such as a chain using a simpler one-parameter model and Uy
would model a side chain libration around a torsion bond using a simplified TLS model (Stuart &
Phillips, 1985). Depending on the context (model and data quality), not all these components can be
realized. For example, Ugrour may be just Uris or Usyscrour. Nested TLS parameterization (when a smaller
TLS group can be enclosed within a larger TLS group) is not yet implemented in phenix.refine.

3.1. Usypcrour

Ususcroup represents one refinable isotropic ADP per group of selected atoms, with any number of
groups. In phenix.refine there are two pre-defined selections for Usyscrour to refine one or two
(side+main chain atoms) Usygcrour per residue. An arbitrarily selected set of atoms can also be a group.
There is no general rule for choosing one parameterization over another; the choice depends on the
resolution (data-to-parameter ratio) and is usually made by systematic testing using Rwork and Rfree as
the criteria. No restraints are applied to Usygcroup, but the value can be constrained between predefined
minimum and maximum values.
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3.2. U|_|B

This is a special case of the TLS parameterization for a rigid-body motion that occurs around a fixed axis
(see for example: Dunitz & White, 1973; Stuart & Phillips, 1985). An example of such motion could be a
libration of a flexible amino-acid side chain around a bond vector (such as the C,-C; torsion bond.
Currently this approach is being implemented in phenix.refine.

3.3. Uqs
If the TLS model is used for the rigid-body motion of a group of atoms then

UTLS = T + IALAt + AS + StAt (3)

with 20 refinable T (translation), L (libration) and S (screw-rotation) matrix elements per group
(Schomaker & Trueblood; 1968).

The choice of TLS groups is often subjective and may be based on visual inspection of the molecule in an
attempt to identify distinct and potentially independent fragments. A more rigorous approach is
implemented in the TLSMD algorithm (Painter & Merritt, 2006a, 2006b)). The TLSMD algorithm
identifies TLS groups by splitting a whole molecule into smaller pieces followed by fitting of TLS
parameters to the previously refined atomic B-factors for each piece. Therefore, it is very important that
the input ADP values for the TLSMD procedure are minimally biased by the restraints used in previous
refinements, and meaningful in general (not reset to an arbitrary constant value, for example). Ideally,
one may need to perform a round of unrestrained ADP refinement just for the purpose of TLS group
identification with TLSMD. Since an unrestrained refinement may not be stable (it might produce non-
physical values or a large spread of refined B-factors, especially at lower resolution), it might be better
to perform a group B-factor refinement only, using one or two refinable parameters per residue. Such a
refinement will not make use of any ADP restraints and therefore yields refined B-factors that attempt
to fit the data most closely within the

limits of the group definition used. Refinement of isotropic ADP, global motion

Futhermore,  currently —the  TLSMD component removed (only local vibration)
procedure does not generate a unique

definitive answer for the TLS group

selection but rather gives a list of possible . \ / \

choices and the researcher has to make the

decision to test one or more TLS group ] -
selections; this still leads to an element of 1

subjectivity in the definition of TLS groups. Restraints

3.4. Uioca \ / \ /

ULoca. models harmonic atomic vibrations 1 ]

occurring around the mean atomic
Refinement of anisotropic ADP, global

position. Depending on the experimental
data quality, this can be a simple isotropic
motion component removed (only local

model where the atomic vibrations have
equal amplitude in all directions, or it can

be more complex where atomic vibration vibration)

is assumed to be anisotropic. Ideally, if all

the group (or global) contributions to the —_— — —_—
total atomic displacement are subtracted, Restraints

leaving only the local atomic vibration
ULocar, then it should obey Hirshfeld’s rigid
bond  postulate  (Hirshfeld, 1976)
providing a basis for the use of similarity

Figure 2. [llustration of similarity restraints.
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restraints (Fig. 2). For isotropic ADPs:

2
71adp = Epairs of (Ulocal,i - Ulocal,j)

bonded
atoms (i,])

(4)

and for anisotropic ADPs:

6
T, = Spinot S(UC U )
adp — gglrf(sieod local,i local, j (5)

atoms (i,) k=1

which is similar to (4) where the inner sum spans over all six ADP matrix elements. Despite its
simplicity this formula has proved useful in many cases. However, more sophisticated approaches have
been suggested in order to better handle a number of special cases for which (5) is suboptimal
(Hendrickson, 1985; Schneider, 1996; Sheldrick & Schneider, 1997). Since phenix.refine allows for a
mixture of atoms with isotropic or anisotropic ADPs, it may happen (at least theoretically) that an
isotropic atom is bonded to one having an anisotropic ADP. Currently, in this case only the isotropic
component of each of the two atoms is participating in the restraint.

4. Practice: mixing contributions into U;gra,, restraints

4.1. UTOTAL = UCRYST + ULOCAL

In practice, it is still customary to have one isotropic refinable parameter per atom at typical
'macromolecular’ resolutions (~1.7-3.04), that is Urora. = Ucryst + Urocar, where the Ugroup contribution
is accumulated into other atomic parameters, including Ucryst and Urocat.

Since in this case UpocaL e
contains other contributions to V¢ 4
displacements (Ugrour) this in
turn invalidates the wuse of
restraints (4-5) (see Fig. 3 for
an illustration). Although Fig. 3

contains some elements of

dramatization and the actual

deviations from similarity may Cp + ]

not be as large as shown =

(especially  for  covalently C D

bonded atoms), still in this case

forcing the B-factors to be Ca

nearly identical is less valid. A

possible work-around is to use Rigid-body libration around S.mallllocal atomic Resplting isotropic
Ca-Cp bond vector, Ugroup vibrations, U gcar equivalent, Urgra,

a knowledge-based type of
restraint introduced by  Figure 3. While local atomic vibrations (Upoca. obey similarity
Tronrud (1996). However, in  restraints, the total ADP (UroraL) may not obey similarity restrains
phenix.refine we have because the contribution (Ugrour) arising from rigid-body motion of
implemented a ‘softer’  a whole fragment may add different displacements to each atom.
algorithm for similarity

restraints, which is based on the following assumptions:

* A bond is almost rigid, therefore the ADPs of bonded atoms (ULoca. component) are similar
(Hirshfeld, 1976);
* ADP values of spatially close (including non-bonded) atoms are similar (Schneider, 1996);
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* The difference between the ADP values of atoms close in space is related to the absolute values
of the ADP values. Atoms with higher ADP values are allowed larger differences (Ian Tickle,
CCP4 Bulletin Board, letter from March 14, 2003).

Considering the above assumptions, we obtain

2
Na ms Ma ms —_
T 120 = 1 (Ulocal,i Ulocal, Jj )

adp p

q
i=1 j=1 "y (Ulocal,i + Ulocal,j)

Here Nawoms is the total number of atoms in the model, the inner sum is extended over all Matoms in the
sphere of radius R around atom i, ry is the distance between two atoms i and j, Uiecai and Uiocalj are the
corresponding isotropic ADP values, p and g are empirical constants. By default, R, p and q are fixed at
empirically derived values: 5.04, 1.69 and 1.03, respectively, but they can also be changed by the user.
The function reduces to formula (4) if p = g = 0, and the radius R is set to be approximately equal to the
upper limit of a typical bond length.

(6)

At high enough resolution, approximately better than 1.6-1.7A, Ugrour = Urys is not used (currently is not
implemented in phenix.refine) leaving UroraL = Ucryst + Uroca. where the UiocaL can be anisotropic.

4.2. UroraL = Ucryst + Ugrour + Urocat

This is the most advanced formulation of ADP parameterization available in phenix.refine. In this
case currently Urocar can only be refined isotopically for those atoms that participate in a TLS group. The
NCS restraints (if available and used) as well as (4) are applied to Uiocar only and not to the whole ADP,
UroraL.

phenix.refine allows any combination of the above ADP refinement strategies to be applied to any
selected part of the structure. The only exception (which is a technical limitation and might be changed
in the future) is that an atom cannot be in a TLS group and simultaneously have an anisotropic Uiocat.

It is important to note that the positive definiteness of Uroral is ensured at all times, while the individual
components may or may not be positive definite (except Ucryst, see below). For example, in combined
TLS and individual ADP refinement N times
(Utorar = Ucryst + Ugrour + ULocaL),

ULocaL are not forced to be non-zero l

or even positive and Uris are not
forced to be positive definite either,
while Urorar is assured to be
positive definite (by using UrotaL = Urs + UpocaL * Ususcrour * Ucryst
eigenvalue filtering). The benefit of
such an approach is that it can
compensate for non-optimal choices

Get start or pre-condition existing parameters:

- Group isotropic ADP refinement (one B per residue)

- Split U;gra. into U s and the rest:

Urorar = Uris * Urocar + Ucryst

of TLS groups (discussed above) by l

a corresponding adjustment of Refine U; g by refining 20 elements of T, L and S matrices:
ULocaL (Wth}.l in such cases becomes Urorar = Uiocar + Uris + Ucryst

a compensation factor and has little 1

physical meaning), while the - - —¥ - :

resulting overall B-factor, Uroral, is Refine U, oca. (restrained individual isotropic or group): L
still positive definite. Ucryst is an Urorar = Uiocar * Urs + Ucryst

exception, and the physical

correctness and compatibility with  pjgure 4. Protocol of combined TLS and individual ADP
the crystal symmetry are enforced at | ofinement.
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the bulk-solvent correction
and anisotropic scaling step.

The contributions Ucrysr,
Ugrour and Uiocar in (1) are
highly correlated making it
generally impractical to
separate them. In addition,
when refined
simultaneously the
elements of the T, L and S
matrices appear to be
correlated as well. This can
generate a number of

numerical issues, such as:
refinement of TLS matrices
to  non-physical values,
refinement becoming

0.35 - Rwork (PHENIX)

0.3 -

0.25 -

0.2

0.15 -

0.1
01 015 02 025 03 035

0.35 1 Rfree (PHENlX)

0.3 -

0.25 -

02 -

0.15 -

Rfree (PDB)

0.1
0.1

015 02 025 03 035

Figure 5. Result of automatic re-refinement of 355 TLS containing

structures in PDB.

stalled, and strong dependence of the final refined values on the starting values. To overcome these
issues we developed a complex algorithm for efficient refinement of the terms in Urorar; the details are
outlined at Fig. 4. The procedure begins with obtaining sensible initial values for TLS parameters and
Urocar- This is performed in three stages: 1) pre-conditioning of B-factors by performing a preliminary
group ADP refinement, 2) extracting T matrix from these refined values as described by Afonine &
Urzhumtsev (2007) and 3) least-squares fit of the T, L and S matrices to UroraL starting with the T
matrix obtained from the previous step and zero or previously refined L and S matrices. The fitted TLS
matrices are now the starting point for the TLS refinement against crystallographic data in the second
step. Finally, the individual B-factors are refined keeping all other components fixed. This is repeated

several times (3 by default).

This combined ADP refinement protocol was tested on 355 structures from PDB that contained TLS
records. The structures were selected using the strict criteria: correct TLS selections and R-factors
reproducible within 0.5%. For the test purposes the original B-factors in these structures were all re-set

to the model
average value.
The re-refinement
of ADP values
using the protocol
described above
resulted in
comparable or
better (than
reported) final R-
factors (Fig. 5).
There was no case
where refinement
showed any
numerical

problems.

ATOM

Urorar =(Uiocar * Ums + trace(Ucgysy)

Isotropic equivalent

Uiocar * Uqs + trace(Ugrysy)

37.211 30.126 28.127

UrotaL =

1 cA aAlAa 1

1.00(26.82

C
ANISOU 1 CA ALA 1 3397 3397 3397 2634 2634 2634 C

Note:

Ucryst - trace(Ucryst)

(3397+3397+3397) /10000./3*8%3.14159**2 ~ 26.82

Stored in separate
record in PDB file
header

Figure 6. A scheme showing how the refined ADPs are stored in a PDB file.
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5. Output of ADP information in PDB files

It should be noted that each atom participating in a TLS group receives an anisotropic ADP (ANISOU
card in PDB) (Fig. 6). phenix.refine always outputs the total ADP for each atom to the PDB file. An
exception is made for Ucryst, where, similarly to CNS (Brunger, 2007), only the trace of this matrix (or
the component that keeps the ADP values positive definite) is added into the output ADP for ATOM and
ANISOU records, while its anisotropic component is separated and is reported in the PDB file header. To
analyze the separate contributions Uris and Uroca. given Urorar, phenix.tls (Afonine, unpublished) is a
tool within PHENIX that is specifically designed for this.

6. Examples
In this section we illustrate the use of refinement strategies with different choices of ADP
parameterization.

All refinements included five macro-cycles of individual coordinates, ADP and occupancy refinement
(see the phenix.refine documentation for details of occupancy refinement), ordered solvent (water)
update (adding, removing, refinement; data resolution permitting). If NCS is available, then both
phenix.refine runs were performed: with and without using NCS, where the NCS groups were
selected by phenix.refine automatically. The X-ray target weight was automatically optimized in all
refinement runs. The only variation between refinement runs was the ADP parameterization:

* individual (I),

* group with one isotropic ADP per residue (G1),

* group with two isotropic ADP per residue (G2; one per main and one per side chain atoms);
* TLS only (T);

* TLS in combination with G1 (T+G1);

* TLS in combination with G2 (T+G2);

* TLS in combination with I (T+I).

In the examples below the best re-refinement result achieved in phenix.refine is shown in bold in
the corresponding table.

Example 1: PDB code 1BLS, resolution 3.24

This structure was originally refined to Rwork = 28.0 and Rfee = 29.0% (Doyle et al., 1998). Chen et al
(2007) re-refined this model using a Normal Mode parameterization in refinement, reducing the R-
factors to 27.2 and 27.2%, respectively (leaving no gap between Rwork and Rfee). At this resolution
automated water model updates were not possible.

Refinement strategy
Rwork/Rfree
(%) I [+NCS G1+NCS | G2+NCS T+NCS | T+G1+NCS | T+G2+NCS | T+I+NCS
25.6/32.0 | 24.7/28.5 | 27.0/30.0 | 26.4/30.8 | 25.0/28.2 | 24.8/28.0 | 24.0/28.1 | 23.3/27.0

Example 2: PDB code 2PFD, resolution 3.424

This structure was originally refined to Rwork = 24.0 and Rgee = 24.9% using a Normal Mode
parameterization (Poon et al, 2007). At this resolution automated water model updates were not
possible.

Refinement strategy
Rwork/Rfree
(%) I I+NCS G1+NCS G2+NCS T+NCS T+G1+NCS | T+G2+NCS | THI+NCS
21.6/28.1 | 20.3/26.5 | 21.5/28.9 | 22.1/29.0 | 21.2/27.5 | 21.0/27.6 | 21.0/28.1 | 20.2/25.8
30
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Example 3: PDB code 1DQV, resolution 3.24

This structure was originally refined to Rwork = 29.3 and Riree = 34.8% using the CNS program (Sutton et
al., 1999). At this resolution automated water model updates were not possible.

Refinement strategy
Rwork/Rfree
(%) I [+NCS G1 G2 T T+G1 T+G2 T+l
21.6/27.9 - 25.3/30.5 | 24.4/29.8 | 22.6/27.3 | 21.9/269 | 21.2/27.3 | 19.7/25.3

Example 4: PDB code 1B7G, resolution 2.054

The PDB file header indicates Rwork = 22.6 and Riree = 29.3% (Isupov et al,, 1999). Winn et al. (2001)
applied combined TLS and individual isotropic refinement which resulted in Rwork = 22.0 and Riree =
25.7%.

Refinement strategy
1 G1 G2 T T+G1 T+G2 T+1
21.4/25.2 23.1/25.8 22.9/26.4 19.7/22.5 19.1/22.5 18.9/22.0 | 17.3/21.2
Rwork / Rfree +NCS
(%) 21.9/25.7 | 223/26.4 | 23.7/264 | 205/221 | 205/227 | 19.6/219 | 17.7/21.3
No water update, no NCS
205/26.0 | 22.1/268 | 22.0/27.8 | 19.5/24.0 | 18.4/223 | 19.2/241 | 16.7/21.7
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Non-periodic torsion angle targets in PHENIX
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Torsion restraints in the PHENIX monomer library have traditionally been parameterized with a target
angle (value_angle), a standard deviation (value angle esd), and a periodicity (period) as
originally specified by Vagin et al. (2004). An example mmCIF definition for the x angles in Trp residues
is shown in Fig. 1A. This periodic parameterization for x angles proves to be insufficient to recapitulate
all favored rotamer positions (Lovell et al., 2000) for Asn, Asp, His, Phe, Trp, and Tyr. For example, Fig.
2A depicts the results of geometry minimization in PHENIX of an ideal Tyr mO0 rotamer, which results in
an m-90 rotamer. This result occurs because the 2 torsion for Tyr is defined as 90° with a periodicity of
2, which excludes the 0° target. In most cases, simply increasing the periodicity of a given torsion angle
is counterproductive as this will open up non-rotameric conformations in addition to the desired values.

A.

_chem _comp_tor

_chem comp_tor.
_chem comp_tor.
_chem comp_tor.
_chem comp_tor.
_chem comp_tor.
_chem comp_tor.
_chem comp_tor.
_chem comp_tor.

.comp_id

id

atom_id_1
atom_id_2
atom_id_ 3
atom_id_4

value_angle
value_angle_esd

period

TRP chil N CA CB CG 1
TRP chi2 CA CB CG CD1

80.000 15.000 3
90.000 20.000 2

B.

_chem_comp_tor.comp_id
_chem _comp tor.id
_chem_comp_tor.atom id 1
_chem_comp_tor.atom_id 2
_chem_comp_tor.atom_ id 3
_chem_comp_tor.atom_id 4

_chem comp_tor.value_angle
_chem_comp_tor.alt_value_angle
_chem_comp_tor.value_angle_esd

_chem_comp_tor.period

TRP chil N CA CB CG 180.000 .

15.000 3

TRP chi2 CA CB CG CD1 90.000 0 20.000 2

Figure 1. Examples of the torsions section of a restraints file in CIF format for TRP.

Original: mO \
Minimized:

m-90

N

1}

\

C

Original: mO
:mO0

Figure 2. Geometry of various rotomers for TRP. Images generated using KiNG (Chen et al, 2009).

As shown in Fig. 2B, increasing the periodicity from 2 to 4 to allow x2 = 0° for Tyr opens up x2 = 180°,
which would allow a rotamer outlier with an impossible steric clash to score favorably in the geometry

term.
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To recapitulate all favorable rotamer positions without introducing false-minima, PHENIX now includes
an alt_angle_value parameter in the tor definitions for non-periodic parameterization of torsion
angles.  Fig. 1B illustrates the usage of the alt angle_value parameter in the mmCIF
parameterization for Tyr. This parameter takes either a single target value, or multiple target values
that are comma-separated. The current value angle esd is used to apply the same ESD to the new
torsion definitions as is used for the original periodic value_angle definition. ESD flexibility for the
alternate parameter will be implemented in the future. Both value_angle and alt_angle value
may be used together for flexible implementation of torsion definitions. To allow for mixing of tor
definitions with and withot alt_angle_ideal values, a " may be used for the alt_angle ideal
parameter for instances where it should be ignored by PHENIX.

All previously inaccessible rotamers for the above mentioned residues have been corrected in the
geostd (http://geostd.sourceforge.net) in PHENIX using alt_angle_value parameters. Fig. 2C illustrates
the proper recapitulation of the Tyr rotamer mO following geometry minimization using the new
parameterization. Tyr x1 as shown in Fig. 1B demonstrates such an entry in practice.

These non-periodic torsion angle definitions may be included in any mmCIF definition for use in
PHENIX, including amino acids, nucleotides, and ligands. One potential use for these parameters is for
specifying sugar puckers in saccharides. Internally, eLBOW (Moriarty et al., 2009) currently uses non-
periodic torsions to generate and control the puckers of saturated rings. The values of the dihedrals of a
six-membered puckered ring in the chair conformer are approximately +55 degrees. A torsion
definition using periods would require a value of 60 degrees and a period of three. This is not an ideal
situation for either the ideal value or the fact that 180 degrees is a minimum on the potential surface.
Furthermore, the boat conformer has two torsions that are approximately zero requiring a period of six.
This makes 120 degrees a possible but non-physical minimum. Testing of the non-periodic torsions for
carbohydrates is currently underway and will soon be available via eLBOW.
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Model-building updates and new features

Tom Terwilligera
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A. Rapid phase improvement and model-building with phenix.phase_and_build (NEW)
PHENIX now has a new and very rapid method for improving the quality of your map and building a
model. This phenix.phase and build approach uses all the tools described in this section. The
approach is to carry out an iterative process of building a model as rapidly as possible and using this
model in density modification to improve the map. This approach is related to the older
phenix.autobuild approach. The difference is that in phenix.autobuild much effort was spent on
building the best possible model at each stage before carrying out density modification, while in
phenix.phase_and build speed of model-building is optimized. The result is that
phenix.phase_and build is 10 times faster than phenix.autobuild, yet it produces nearly as
good a model in the end. The phenix.phase and build approach will also find NCS from your
starting map and apply it during density modification. You can run phenix.phase_and_ build with:

phenix.phase_and_build my experimental data.mtz my_sequence.dat

You can also add a starting model or a starting map. This means that you can run it once, get a new
model and map, then run it again to improve your model and map further.

When you run phenix.phase and build it will write out a phase and build params.eff
parameter file that can be used to re-run phenix.phase and_build (just as for essentially all PHENIX
methods). In addition, phenix.phase _and build will write out the parameters files for the
intermediate methods used as part of phenix.phase_and_build to the temporary directory used in
building. You can

*  Run NCS identification

phenix.find ncs temp_dir/find_ncs_params.eff
*  Run first cycle of density modification

phenix.autobuild temp_dir/AutoBuild run_1l_/autobuild.eff
*  Run most recent model-building

phenix.build one_model temp_dir/build_one_model_params.eff
* Run sequence assignment and filling short gaps

phenix.assign sequence temp dir/assign_sequence_ params.eff
* Runloop fitting

phenix.fit loops temp dir/fit loops params.eff

This gives you control of all the steps in map improvement and model-building in addition to letting you
run them all together with phenix.phase_and_build.

The phenix.autosol wizard now uses phenix.phase and_build by default for model-building.
This means that now the models produced by phenix.autosol are quite good but are still obtained
quickly.
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B. Working with NCS in PHENIX with phenix.find_ncs: Identification of NCS from heavy-
atom sites, from a model or from a map

The £ind_ncs method contains all the algorithms available in PHENIX for finding NCS, including a new
algorithm for finding NCS directly from a map. The approaches used in £ind_ncs are:

1. Finding NCS from a map (NEW):
phenix.find_ncs my map.mtz

The £find ncs_from density algorithm first identifies potential locations of centers of
macromolecules in the density map by finding maxima of the local RMS density. Then it cuts out a
sphere of density centered at a trial center and carries out an FFT-based rotation-translation search to
find all occurrences of similar density in the asymmetric unit of your map. The region over which NCS-
related correlation is high is identified and the operators are written out as a "find_ncs.ncs_spec”
file that can be read by the PHENIX wizards and a "find_ncs.phenix_refine" file that can be read
by phenix.refine. You can run the algorithm as a whole or you can run each part separately with
phenix.guess_molecular centers and phenix.find ncs_from density.

2. Finding NCS from heavy-atom sites or a model
phenix.find ncs ha.pdb my map.mtz
phenix.find ncs my model.pdb

If you have a heavy-atom pdb file and a map file, then phenix.find_ncs will identify subsets of your
heavy-atom sites that are related by non-crystallographic symmetry, and it will check whether this NCS
is actually reflected in your map. It will write out the resulting NCS as ncs_spec and phenix refine
files. If you have a model with several chains that are related by NCS symmetry, phenix.find_ncs
will find the NCS operators from the coordinates in your model.

3. Reading NCS from a my_ncs.ncs_spec file
phenix.find ncs my ncs.ncs_spec

will read a ncs_spec file written by a PHENIX method, and write out the NCS in formats suitable for
phenix.refine or the wizards. If you supply also a map MTZ file, it will check for this NCS in your
map.

4. Creating NCS-related copies

You can also apply NCS operators from a my ncs.ncs_spec file to a single copy of your protein to
create all the NCS-related copies with:

phenix.apply ncs my ncs.ncs_spec my model one ncs_copy.pdb
C. Fitting loops with loop libraries (NEW) and by tracing chains with phenix.fit_loops
phenix.fit loops my model with gaps.pdb my map.mtz my sequence.dat

The phenix.fit loops approach now has two main algorithms. One is to fit short gaps using a loop
library derived from high-resolution structures in the PDB, and the other is to build loops directly by
iterative extension with tripeptides. The loop-library approach (specified with loop 1lib=True) is
very fast, and is currently applicable for short gaps of up to 3 residues. The iterative extension approach
is slower, but can be used for longer gaps (typically up to 10-15 residues).
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D. Rapid building of a single model with phenix.build_one_model (NEW)

PHENIX now has a tool that you can use to quickly build a single model from a map and sequence file, or
to extend an existing model. You can build a new model with resolve model-building with:

phenix.build_one_model my map.mtz my_ sequence.dat

If you supply a PDB file, then the ends of each chain in your model will be extended, if possible, based on
your map.

E. Sequence assignment and short gap filling with phenix.assign_sequence (NEW)

You can now carry out an improved sequence assignment of a model that you have already built with
phenix.assign_sequence. Further, once the sequence has been assigned, this method will use the
sequence and proximity to identify chains that should be connected, and it will connect those that have
the appropriate relationships using the new loop libraries available in phenix.fit loops. The result
is that you may be able to obtain a more complete model with more chains assigned to sequence than
previously. You can run it with:

phenix.assign_ sequence my model.pdb my sequence.dat my map.mtz

PHENIX website for downloads, documentation and help

Phen'x www.phenix-online.org
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